
Shunting Trains with Deep Reinforcement Learning

Wan-Jui Lee

R&D Hub Logistics, 

Dutch Railways



Meet the fleet of NS

https://www.google.nl/url?q=http://nederlandsov.nl/treinen/ICM/47&sa=U&ei=IKFnU5qoGIWjPdzzgYAH&ved=0CDgQ9QEwBQ&sig2=cFkq62G_HbkJiGqG-g8SBw&usg=AFQjCNFO_szTiILkQmtETImTa9vLHXVD-Q
//commons.wikimedia.org/wiki/File:NID_te_Den_Haag_Centraal.jpg


Train Unit Shunting Problem

Service Location with carousel layout (Den Haag Kleine Binckhorst) 
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Example of a Shunting Instance



Processes at Service Sites

Problems to solve
• Shunting
• Routing
• Parking
• Matching
• Service
• Combine
• Split

➢ For some yards it takes a human planner up to one day to create a
plan for the upcoming night.

➢ The planning task is getting more complex due to increase of trains



What a Shunting Schedule Looks Like



Can machines learn to plan?

Reinforcement Learning learns to play a game by gaining experience, 
just like a human player:

➢ Try various actions in different situations (explore)

➢ Learn/store information about the game that can bem

generalized to potentially unseen scenarios

➢ Learn the most valuable actions by using the reward signal
(exploit)



Deep Q-Network (DQN) by Google Deepmind

Reinforcement Learning + Deep Neural Networks



Q-Learning

- A popular Reinforcement Learning algorithm

- An extension to traditional dynamic programming

- It learns the value for each state-action pair: Q(s; a).

Q-learning does not scale: we need to store (and learn) each state-
action pair explicitly in the Q-Table.



Deep Reinforcement Learning

Deep Q-Network (DQN) of Mnih (2015) represents Q-Table using a
Convolutional Neural Network.

• Combine reinforcement learning with Deep Neural Networks
• No need to learn all state-action pairs explicitly
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DRL for TUSP including Service Tasks 



Scope of the Problem to be Solved 

◼ Single unit trains both in arrival and departure 

◼ Cleaning service 

◼ Cleaning starts as soon as train put on cleaning track

◼ No simultaneous movement

◼ Agent can move trains as much as time budget allows 

◼ Full information on schedule of trains

◼ Trains arrival and task time deterministic

◼ Trains must leave exactly on time



State Space Design (Input to NN)

◼ Position (1-6) of train units on the track: Boolean

◼ Required internal cleaning time of train units: Float (x/60)

◼ Is a train unit under internal cleaning: Boolean

◼ Length of train units: Float (x/500)

◼ Time to arrival of train units : Float (x/720)

◼ Is it the arrival time of a train unit: Boolean

◼ Next 3 departure time of the same material type:  Float (x/720)

◼ Is it the departure time of the same material type: Boolean



Action Design (Output dimensions of NN)

◼ 52 track to track movements

• 8 parking to gate

• 8 gate to parking

• (4 parking + 1 relocation) to 2 cleaning

• 2 cleaning to (4 parking+1 relocation)

• 8 parking to 1 relocation

• 1 relocation to 8 parking

◼ 1 wait 

State
16*12

*23
CNN

Q1

Q2

Qn

…

Number of actions



Trigger Design (Generate Learning Events to NN)

◼ Arrival trigger: train and time

◼ Departure trigger: material and time

◼ End of Activity trigger: train and time

◼ Time trigger: every one hour



Reward Design (Generate Feedback to NN)

◼ Negative rewards:
• Relocation: -0.3
• Move to cleaning track while no cleaning required: -0.5

◼ Positive rewards:
• Right departure: +2.5
• Arrival on time: +0.2
• Wait for service to end:+duration/60
• End service: +duration/60
• Find a solution: +5

◼ Violations: cost a life
• Lost 3 continuous lives or no available actions: end the episode 



Violations

◼ Choose start track that is empty

◼ Choosing to wait in time for arrival or departure

◼ Parking a train on track relocation track or gate track

◼ Choosing wrong time for departure

◼ Choosing wrong type for departure

◼ Choosing not clean train for departure

◼ Moving train while in service

◼ Track length violation

◼ Missing a departure or arrival while doing other movements 



From Q network to Value network

Post-decision state variable

▪ TUSP agent has a deterministic policy

It follows 



Value Iteration with Post-decision State (VIPS)

◼ Reduce the output dimension from 53 to 1

◼ Instead of estimating Q values of 53 actions (52 movement + 1 wait) at one 

time, estimate only the V value of the given state. 
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Experiment

◼ Instance Generation: 

• 5,000 problem instances are generated for 4, 5, 6 and 7 trains each

• From these 20,000 problem instances, 1,000 are randomly withdraw as the test 

instance while the rest are used for training the DRL agents.

• The shunting yard studied in this work is ’de Kleine Binckhorst’

◼ Neural network architecture

• 2 dense hidden layer of 256 and 128 nodes, separately, with ReLu activation function

• Output of DQN: 53 dimensional vector; output of VIPS: 1 dimensional vector



Performance: Convergence

Q values of VIPS learned on all actions Q values of DQN learned on all actions 



Performance: Problem Solving Capability

Average percentage of solved instances and standard deviations of different
models on solving 5 sets of 200 test instances.



Visualization of a TUSP reinforcement agent



Q&A

Further interets/questions: wan-jui.lee@ns.nl


